A measure for perfect PAC fields with pro-cyclic Galois group
نویسندگان
چکیده
منابع مشابه
Motives for perfect PAC fields with pro-cyclic Galois group
Denef and Loeser defined a map from the Grothendieck ring of sets definable in pseudo-finite fields to the Grothendieck ring of Chow motives, thus enabling to apply any cohomological invariant to these sets. We generalize this to perfect, pseudo algebraically closed fields with pro-cyclic Galois group. In addition, we define some maps between different Grothendieck rings of definable sets which...
متن کاملGeometric Galois Theory, Nonlinear Number Fields and a Galois Group Interpretation of the Idele Class Group
This paper concerns the description of holomorphic extensions of algebraic number fields. After expanding the notion of adele class group to number fields of infinite degree over Q, a hyperbolized adele class group ŜK is assigned to every number field K/Q. The projectivization of the Hardy space PH•[K] of graded-holomorphic functions on ŜK possesses two operations ⊕ and ⊗ giving it the structur...
متن کاملPac Fields over Finitely
We prove the following theorem for a finitely generated field K: Let M be a Galois extension of K which is not separably closed. Then M is not PAC over K.
متن کاملA history of Galois fields
This paper stresses a specific line of development of the notion of finite field, from Évariste Galois’s 1830 “Note sur la théorie des nombres,” and Camille Jordan’s 1870 Traité des substitutions et des équations algébriques, to Leonard Dickson’s 1901 Linear groups with an exposition of the Galois theory. This line of development highlights the key role played by some specific algebraic procedu...
متن کاملA Polynomial with Galois Group SL2(11)
We compute a polynomial with Galois group SL 2 (11) over Q.Furthermorewe prove that SL 2 (11) is the Galois group of a regular extension of Q(t).
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2007
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2006.09.024